Socially synchronized circadian oscillators.
نویسندگان
چکیده
Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day-night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the 'group' level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature.
منابع مشابه
Nocturnal Male Sex Drive in Drosophila
Many behaviors and physiological processes including locomotor activity, feeding, sleep, mating, and migration are dependent on daily or seasonally reoccurring, external stimuli. In D. melanogaster, one of the best-studied circadian behaviors is locomotion. The fruit fly is considered a diurnal (day active/night inactive) insect, based on locomotor-activity recordings of single, socially naive ...
متن کاملCircadian molecular clocks tick along ontogenesis.
The circadian system controls the timing of behavioral and physiological functions in most organisms studied. The review addresses the question of when and how the molecular clockwork underlying circadian oscillations within the central circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and the peripheral circadian clocks develops during ontogenesis. The current model of th...
متن کاملSpontaneous synchronization of coupled circadian oscillators.
In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotran...
متن کاملEfficient multiscale simulation of circadian rhythms using automated phase macromodelling techniques.
Circadian rhythm mechanisms involve multi-scale interactions between endogenous DNA-transcription oscillators. We present the application of efficient, numerically well-conditioned algorithms for abstracting (potentially large) systems of differential equation models of circadian oscillators into compact, accurate phase-only macromodels. We apply and validate our auto-extracted phase macromodel...
متن کاملControlling Circadian Rhythms by Dark-Pulse Perturbations in Arabidopsis thaliana
Plant circadian systems are composed of a large number of self-sustained cellular circadian oscillators. Although the light-dark signal in the natural environment is known to be the most powerful Zeitgeber for the entrainment of cellular oscillators, its effect is too strong to control the plant rhythm into various forms of synchrony. Here, we show that the application of pulse perturbations, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 280 1765 شماره
صفحات -
تاریخ انتشار 2013